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SUMMARY

Over the past six months, we have completed a major data analysis investi-

gation of five large aftershocks (4.0 < mL < 4.9) of the August 1, 1975 Oroville,

California earthquake. These events were each recorded by eight or more SMAI's

at hypocentral distances of 8 to 20 km. The measurement and analysis of the

energy flux in the shear wave arrivals, as suggested in the last semi-annual

report, has been shown to provide a significant improvement in the estimation

of source dimension, as well as to permit quantitative estimates of the radiated

seismic energy and the apparent stress. Displacement pulse shapes, spectra and

energy flux pulse shapes vary in a systematic fashion over the focal sphere,

although these variations differ somewhat from the variations predicted by the

circular models discussed in the last semi-annual report. In order to evaluate

and resolve these differences, we have derived an asymmetric healing model from

an extension of our previous modelling work, which retains the "pseudo-dynamic"

character of the circular models. As the conclusions for the analysis of the

Oroville data depend on the results of our modelling, on which we have only just

begun work, we will delay discussion of those results to the September 1978

semi-annual report. In this report, we will discuss thie theoretical motivation

and analysis for these "pseudo-dynamic" models of rupture, both as functional

constraints for the rupture motion and as a general framework for modelling

considerations. We have included as an appendix a translation from the Russian

of part of a recent book by B. V. Kostrov on source theory, which provides an

analytic framework for consideration of the non-uniqueness of source modelling.

Our discussion is summarized in the following two paragraphs.
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I.- The inverse problem of seismic source theory, using a finite number

of far-field observations, is a seriously non-unique problem. It is necessary

then to seek to reduce this non-uniqueness by constraining the class of rupture

models to be dynamically consistent, both in their nucleation and in their

healing. As the far-field wave-forms depend on an integration over the rupture

area of the particle velocity, we have derived specific analytic forms for the

particle velocity in these two phases, i.e., the nucleation (or self-similar)

phase and the healing (or transitional) phase. In our specification, the

interaction of these two phases on the fault perimeter produces a realistic

stopping behavior, allowing us to model earthquakes whose body wave spectra

show a wide range of spectra falloffs and high frequency structure.

II.- The resulting general model is approximately correct in its radiation

efficiency, enabling us to use the time histories of the seismic energy flux,

as well as the time-integrated energy flux, as realizable model constraints.

The radiated seismic energy is strongly focussed in the direction of rupture

propagation for a model with a significant unilateral component of rupture.

Our asymmetrical model (hereafter referred to as the A-model) details the trans-

ition from the (degenerate) circular models (the D- and M-models discussed in

the September 1977 semi-annual report) to unilateral models of rupture. This

general model will do much to aid the interpretation of earthquakes whose pulse

shapes and spectra vary strongly over the focal sphere.
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INTRODUCTION

It is useful to begin by considering the non-uniqueness of the inverse

problem of seismic source theory. Formulated in terms of the far-field

approximation, this inverse problem requires the solution of the inverse

triple-transform,

Au(E,t) 1 fff F(k,c,))i4t+i'kdk dk dw (1)
8Si3

where F(k,w), the triple-transform of the distribution of the slip velocity on

the rupture area, is determined within the domain

k2 + k 2 < W,2  (2)
1 2- B2

where w' is the highest resolvable frequency, from measurements of the Fourier

transforms of the far-field pulse shapes in all directions. Kostrov (1975)

[see Appendix] has demonstrated that the solution of this inverse problem is

non-unique or "instable"; i.e., even with a sufficiently sampled transform,

F(w,k), obtained from a dense set of far-field observations, one cannot distin-

guish the dimensions of the rupture area without adducing constraints on the

class of functions, Au( ,t), which describe the slip at the source beyond

inclusion in the class L . Although the assumption of an unreversed slip
2

reduces this instability, the inverse problem is still non-unique under this

constraint. This result also implies the possibility of fitting any particular

class of simple functions describing the seismic source to obtain as close a

fit as desired to a set of observations without correctly modelling the motion
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at the focus. For a finite set of actual observations, this non-uniqueness

assumes an overwhelming importance, such that the use of a particular "source

model" (i.e., Brune, 1970; Savage, 1972; Madariaga, 1976; etc.) becomes the

most important decision in determining the necessary source parameters of fault

dimension and stress drop. It is this choice of source models which this

report seeks to address in a heuristic fashion, in an effort to motivate the

use of dynamically consistent models of rupture.

Our "psevdo-dynamic" models are designed to incorporate two basic physical

considerations. First, the rupture is presumed to grow in a causal fashion

from a point (the hypocenter), such that the crack tip acts as an energy

focus. We presume that the dynamics of the crack growth are adequately des-

cribed by an elliptical slip distribution, where the particle velocity is a

maximum as the rupture front passes and slows asymptotically to a constant

value until the rupture begins to heal. Second, the healing itself is

approximately causal, such that the onset of healing propagates from a stopping

event, or from a locus of stopping events, into the interior of the rupture area

at a finite velocity, presumably the compressional wave velocity. The healing

is further assumed to be monotonic, i.e., we do not attempt to incorporate

break-out phases (resulting from the interaction of the rupture front with a

free surface; Burridge and Halliday, 1971), and we assume that in the presence

of a finite frictional stress, the rupture will heal without reversal of slip.

This heuristic approach to kinematic modelling naturally divides the

particle velocity for any point on the rupture area into two distinct phases,

which we will refer to as the nucleation phase and the healing phase. The

following two sections will be taken up in motivating the specific analytic forms

for these phases which we use to generate our synthetic body wave pulse shapes.

4%m
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NUCLEATION

During the nucleation phase, the particle motion is assumed to be purely

elliptical, i.e., described by

Au (,t) A()(t2-T2())

(&,t) -A(E)t/(t2-T' (E))2 ,

depends on the effective stress, Te, and the rupture velocity, v, approximately as

A( ) Z VTe/P (Dahlen, 1974). Figure 1 shows the resulting particle velocity as
e

a function of time for a representative point on the fault. It is necessary

to point out that this representation, while suitably general, does not in-

corporate any of the complexities such as diffraction effects, introduced by

abrupt changes of the rupture velocity (other than stopping) or variations in

time of the dynamic frictional stress. In our implementation of eq. 3, we

presume the loading stress to be approximately homogeneous and use a constant

rupture velocity, thereby fixing A( ) = A(O), where A(O) is the particle

velocity at the hypocenter.

It is also important to note that while eq. 3 represents a dynamically

consistent slip distribution for a subsonically growing rupture (Richards,

1973), it may also be appropriate for describing an approximate transonic model,

where the rupture velocity of the plane strain component lies between the shear

wave and compressional wave velocity, while the anti-plane strain component

is less than or equal to the shear wave velocity (Burridge, 1973). Elliptical

models with transonic rupture velocities may be simply programmed by a minor

II ,I I
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extension of the code we are presently using to compute synthetic pulse shapes.

Theoretical investigations of transonic rupture growth are comparatively recent,

however, and more work must be done to insure we can properly incorporate these

results before any modelling is attempted.

The presence of the half-order singularity in slip velocity is handled in

a computationally efficient fashion, as described in the September 1977 semi-annual

report. In actual materials, the peak particle velocity is bounded due to the

finite yield strength of the rock, since this is the upper bound for the stress

concentration at the crack tip (Andrews, 1976, 1977). Thus, a more realistic

form for the particle velocity would be a smoothed version of Figure 1, such

that it reflected this boundedness. However, as the far-field pulse shape is

obtained by an integration over the rupture area, a bounded version of eq. 3

would produce approximately the same result, so that our simple analytic form

is adequate.

HEALING

The healing phase represents a transition from the elliptical slip or

nucleation phase to the static final offset. We presume the onset of healing

to be a diffraction effect, propagating from a locus of stopping events (i.e.,

the slowing or stopping of the rupture front) into the interior of the fault

(Madariaga, 1977; Achenbach, 1978). In our circular healing model, discussed

in the September 1977 report, this locus was a circle which the rupture front

reached simultaneously at all azimuths. This unphysical azimuthal behavior

produced anomalous pulse shapes, spectra and energy flux within the cone

v sin 8 < .2. Snapshots of the particle displacement during the rupture growth
c
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and healing are shown in Figure 2, with the part of the fault which is healing

shown darkened. The analytic form used for this healing phase, (eq. 20b,

September 1977 report)

L\uh'r,t) = A(O) (t
2 -v(r)(t-Ts(r))

2 
- r2 )2 Ts(r) < t Thjr)s T (r)< t T h(r) (4)

V
2

where T s(r) is the arrival time of the P-wave generated at the perimeter

of the fault, was obtained from the considerations of continuity of the

(unreversed) particle velocity and uniform static stress drop over the rupture

area.

The success of this kinematic description in duplicating Madariaga's (1976)

results has encouraged us to attempt to describe asymmetric stopping mechanisms

in a similar manner. However, the analytic complexities of an asymmetrical

rupture model preclude an explicit use of the second criterion, i.e., the uni-

form static stress drop. We have weakened this constraint to the more realistic

constraint of Aa( ) > Tr over the rupture area. In our asymmetrical model, the

healing at any point is described by a general analytic form for the particle

velocity,

'ah (& t ) = A(E)(Th( )-t)t Ts() < t < T( ) (5)

(T ( )-r ( ))(t2-T2(&)11 
s

h s -__ ___ __

where T (E) is the arrival time of the diffracted P-wave and Th( ) is the time

of healing, i.e., Au(&,t) = 0 for t > Th(0. Our motivation for assuming that

the diffraction effect dominates the healing is derived from consideration of the

causal behavior of the shear stress in our frictional model during rupture.
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Behind the rupture front, the shear stress acting on the rupture surface is at

the dynamic frictional stress level; the diffracted P-wave carries a negative

stress pulse, dropping the shear stress below this frictional stress level such

that the rupture begins to heal. As an overview, it is useful to regard the

motion at an interior point as continuing until information (carried by the

diffracted P-wave) concerning the finiteness of the fault reaches it and healing

begins. The kinetic energy of the fault motion is dissipated in frictional

heating, while the negative stress pulses of the waves diffracted from the rup-

ture stopping lower the loading stress in a monotonic fashion, so that the final

static stress level is lower than the dynamic frictional stress, by which we

obtain La(&) > T . In stress release models where the dynamic frictional stress-- e

is zero, the slip reverses itself, oscillating around a static offset with the

uniform stress drop x (the loading stress), and the kinetic energy is radiatede

seismicly (Burridge, personal communication).

STOPPING BEHAVIOR

For our analytic specification of the particle velocity over the fault

surface, we need only determine the three times; Tr ( T ) (C) and Th( for

each grid point within the rupture area. As a first approach, we have set

Ts( ) = Th( ) - st where st is the stopping or healing interval for the particle

motion at all points on the fault. This constant healing interval for the

entire rupture area, combined with a constant rupture velocity, v, produces a

fault perimeter of width,

Lr 7 -||v)
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over which the particle velocity is "smoothed", i.e.,

Auh( ,t) h A(C)(Th(E)-t)t IEI/v 2 < t < Th( ) (6)

st(t2-1 &I2/v2)2

producing an excellent approximation of a rupture which stops gradually, in

the manner of the D-model discussed in the September 1977 semi-annual report,

but which also heals in a causal fashion. By this approach, our general spec-

ification allows us to vary Ar systematically, in order to model faults which

stop in an arbitrarily gradual or sudden fashion, thereby obtaining shear wave

spectra which show spectral falloffs of 2 < y < 3 and the general two corner

frequency envelopes of the type discussed by Boatwright (1978). The possibility

of modelling such a general class of rupture growth and stopping behaviors in

a systematic fashion represents a significant advance in source modelling.

Although the particular analytic form for this stopping is not dynamically

motivated, on this perimeter the healing factor may be decomposed as

(Th()-t) = (Th (C)-I/v) (Th()-t) (7)

s--t s- (T h  C)- I&I/v)

where we may identify the first term as the appropriate decrease of A(C) re-

sulting from an implied decrease in rupture velocity. The second term,

(Th(E)-t)/(Th()-II/v), exhibits the linear healing characteristic of the

interior rupture area.

As shown in the series of snapshots in Figure 3, detailing the growth of

th. dislocation on this fault perimeter, the interaction of the rupture growth
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and healing produces a realistically smoothed distribution of slip at the fault

boundary, in constrast with the D- and M-models of the September 1977 semi-

annual report. The uppermost snapshots of Figures 2 and 4, i.e., the final

slip distributions of the M-model and the A-model also display this difference.

Using the technique of Andrews (1974), we have calculated the static

stress drop for one of the A-models, for T 0 .4, x a .2, a = 2. and st - .1.o 0

The results are displayed in Figure 5. The effect of the gradual stopping

is to smooth the stress drop, weakening the stress concentration at the peri-

meter of the fault. The peaked behavior of the stress drop at x is a result
-O

of our healing specification, in particular, the fact that st is constant for

the entire fault surface. A variation of st over the interior of the fault

could be determined such that the stress drop was smooth in the manner of the

M-model but it would have little effect on the radiated pulse shapes.

To complete our model, we need only specify Th( ). In the models analysed

for this report, we have used

T T -

where T is the time from the nucleation to the complete healing of the rupture,

and x defines the direction and relative extent of the asymmetry of the final
-0

rupture area. The rupture area generated by the interaction of the circular

growth and this (offset) circular healing is approximately elliptical, with

eccentricity .4 < e < 1.0. The specific form of the healing may be easily

varied to produce whatever final rupture area, relative to the point of nuc-

leation, desired. In Figure 4 we show snapshots at equal time intervals

(at - .1) of the growth and healing of the A-model. The parts of the fault

which are healing are shown darkened.
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RESULTS

One significant feature of these "pseudo-dynamic" models is that the

seismic energy radiated is consistent with the theoretical analysis of Kostrov

(1974) and Madariaga (1976) for general frictional models of rupture. This

allows us to use both the energy flux pulse shapes and the time-integrated

energy flux of the body wave arrivals as realizable model constraints. The

energy flux in a body wave travelling with velocity c(x) is given by

(x,t) = ;(x)c(x)u2 (x,t)

where o(x) is the density and u(x,t) is the ground displacement. To detail

this energy flux, we have included plots of the square of the ground velocity

(v2-plots) in the figures describing our model results, as they provide a

particularly useful insight into the variation of the pulse shapes over the

focal sphere. In Figure 7 we show the far-field shear wave radiation from

a circular version of the A-model, using T - .6, a - 2., v - 1.0, ando

st - .15, for three different takeoff angles. Our source receiver geometry

is presented in Figure 6. These results provide a check of the program code,

corroborating the earlier results form the M- and D-models. The shifting of

the dominant contribution to the energy flux from the stopping phase to the

nucleation phase as the angle between the fault normal and the direction to

the observer increases is eloquently demonstrated by the variation of the

v;-plots.

The noise level produced in these computations, generally evident in the

highest spectral octave, comes from the relatively coarse sampling of the

stopping behavior. This level, approximately constant for each model, is

easily decreased by using a finer grid.
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In Figures 8-10 we present the S-waves from the model whose displacement

at different intervals in time is presented in Figures 3 and 4. For this

model we have used T - .5, x - .4, a - 2., v - I., and st = .1. The resulting

rupture area is elliptical, with eccentricity e - .55. This represents a some-

what extreme version of the A-model, but it serves to illustrate very clearly

the effect on the pulse shapes of the asymmetrical healing. In Figures 8 and 9

we show the pulse shapes and spectra for six takeoff angles in a plane normal

to the fault plane, starting from the direction of the rupture growth. For a

rupture velocity of .9 these angles (9 x) are respectively 150, 450, 750, 1050,

1350, 1650 from the direction x . The pulse shapes are most compact near 8 =

400. This result is in contrast to the circular models, whose pulse shapes

were most compact in the direction normal to the fault plane. The A-model

naturally provides an intermediate form between the circular models and a

unilateral model of rupture, in the manner of the Savage (1966) model. Since

the A-model does not assume that the source time function for the particle

velocity is identical at each point on the fault plane, the variation of the

pulse shapes and spectra over the focal sphere is more pronounced.

Finally, in Figure 10, we have plotted the pulse shapes and spectra for

three takeoff angles in a plane normal to the fault plane but 600 from the

direction of x . The displacement pulse shapes at this azimuth show an inter-
-0

mediate behavior and a characteristic "flattened" aspect.

The radiated seismic energy is strongly focussed in the x direction,=o

such that the time integrated energy flux in the shear waves varies by a

factor of twenty over the focal sphere. Further analytical work is necessary

to obtain the total radiated seismic energy from the A-model, as the one-

dimensional curve fitting and integration used for the circular models cannot

be used here. The pronounced variation of e (x), the time integrated energy
c .

flux, makes calculation of c (x) an even more useful discriminant for earthqauke

modelling.
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CONCLU SIONS

We have shown that it is possible to build dynamically consistent models

of rupture which heal in a causal and asymmetric fashion, and have generated

a simple computational code by which it is possible to model a very general

class of rupture growth and stopping behaviors. This A-model is similar to

Savage's elliptical model, but is dynamically feasible. We have com-

puted pulse shapes and spectra for a particular form of our model, having a

70% unilateral component of rupture. The displacement pulse shapes, vz-pulse

shapes and integrated energy flux vary substantially over the focal sphere,

providing the seismologist with a series of discriminants for the modelling

of seismically recorded earthquakes. We plan to use this model extensively

in order to interpret several large, multiply recorded aftershocks of the 1975

Oroville, California earthquake.
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FIGURE CAPTIONS

Figure 1: Generalized plot of the particle velocity at an arbitrary point

on the fault surface. T r denotes the arrival of the rupture front,

Ts the arrival of a "stopping phase" diffracted from the edge of

the fault, and Th is when the rupture heals.

Figure 2: Snapshots, at equal time intervals, of the particle displacement

for the M-model. In the first three time intervals, it iv growing

in a self-similar fashion, while by the forth snapshot, it has

stopped and is beginning to heal. The shaded region marks where

the rupture surface is healing, in transition from the (unshaded)

region of self-similar growth inside the healing rings to the

(unshaded) region where the fault is healed. The uppermost graph

shows the final slip distribution.

Figure 3: Detail of the stopping behavior of the A-model shown in Figure 4.

The healing regions are shown darkened. Note how the rupture

"smooths" as it reaches the final fault perimeter.

Figure 4: Snapshots of the particle displacement for the full A-model. The

rupture growth is 70% unilateral. The healing region is generated

by a stopping event to the left of the point of nucleation; it

divides the self-similar region on the right from the healed region

on the left. The uppermost graph shows the final slip distribution.



18.

Figure 5: Static stress and displacement plots for the A-model, computed

using the technique of Andrews (1974).

Figure 6: Source-receiver geometry for Figures 7-10. Z is the fault plane

(9 - 0) and x is the direction of rupture propagation in our-0

asymmetrical models.

Figure 7: Pulse shapes, v2-plots and velocity spectra for a circular version

of the A-model. For a rupture velocity of v = .90, the three

takeoff angles represented here are 15*, 450 and 750 from the normal

to the fault plane. Note the marked variation of the v2-plots and

the rate of spectral falloff for the three directions.

Figure 8: Pulse shapes, v2-plots and velocity spectra for the version of the

A-model whose growth and healing is shown in Figures 3 and 4. For

a rupture velocity of v - .90, these three directions are at angles

of 15*, 45* and 750 from the direction of rupture, in a plane normal

to the fault.

Figure 9: Pulse shapes, v2 -plots and velocity spectra for three directions

(at angles of 105, 135* and 1650) from the direction of rupture,

in the same plane as Figure 6. Note the decrease in radiated energy

in the back azimuths.

Figure 10: Pulse shapes, v2-plots and velocity spectra for three directions

(15, 45* and 75*) from the normal to the fault plane, in a plane

60* to direction of rupture. Notice the flattened aspect of the

pulse shapes.
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